skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McComb, David_W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Magnetic materials with kagome crystal structure exhibit rich physics, such as frustrated magnetism, skyrmion formation, topological flat bands, and Dirac/Weyl points. Until recently, most studies on kagome magnets have been performed on bulk crystals or polycrystalline films. Here, we report the atomic layer molecular beam epitaxy synthesis of high-quality thin films of topological kagome magnet Fe3Sn2. The structural and magnetic characterization of Fe3Sn2 on epitaxial Pt(111) identifies highly ordered films with c-plane orientation and an in-plane magnetic easy axis. Studies on the local magnetic structure by anomalous Nernst effect imaging reveal in-plane oriented micrometer size domains. Superlattice structures consisting of Fe3Sn2 and Fe3Sn are also synthesized by atomic layer molecular beam epitaxy, demonstrating the ability to modulate the sample structure at the atomic level. The realization of high-quality films by atomic layer molecular beam epitaxy opens the door to explore the rich physics of this system and investigate novel spintronic phenomena by interfacing Fe3Sn2 with other materials. 
    more » « less
  2. The molecule-based ferrimagnetic semiconductor vanadium tetracyanoethylene (V[TCNE]x, x ≈ 2) has garnered interest from the quantum information community due to its excellent coherent magnonic properties and ease of on-chip integration. Despite these attractive properties, a detailed understanding of the electronic structure and mechanism for long-range magnetic ordering have remained elusive due to a lack of detailed atomic and electronic structural information. Previous studies via x-ray absorption near edge spectroscopy and the extended x-ray absorption fine structure have led to various proposed structures, and in general, V[TCNE]x is believed to be a three-dimensional network of octahedrally coordinated V2+, each bonded to six TCNE molecules. Here, we elucidate the electronic structure, structural ordering, and degradation pathways of V[TCNE]x films by correlating calculations of density functional theory (DFT) with scanning transmission electron microscopy and electron energy-loss spectroscopy (EELS) of V[TCNE]x films. Low-loss EELS measurements reveal a bandgap and an excited state structure that agree quantitatively with DFT modeling, including an energy splitting between apical and equatorial TCNE ligands within the structure, providing experimental results directly backed by theoretical descriptions of the electronic structure driving the robust magnetic ordering in these films. Core-loss EELS confirms the presence of octahedrally coordinated V+2 atoms. Upon oxidation, changes in the C1s-π* peak indicate that C=C of TCNE is preferentially attacked. Furthermore, we identify a relaxation of the structural ordering as the films age. These results lay the foundation for a more comprehensive and fundamental understanding of magnetic ordering and dynamics in these classes of metal–ligand compounds. 
    more » « less
  3. Abstract Antiferromagnets hosting structural or magnetic order that breaks time reversal symmetry are of increasing interest for “beyond von Neumann” computing applications because the topology of their band structure allows for intrinsic physical properties, exploitable in integrated memory and logic function. One such group are the noncollinear antiferromagnets. Essential for domain manipulation is the existence of small net moments found routinely when the material is synthesized in thin film form and attributed to symmetry breaking caused by spin canting, either from the Dzyaloshinskii–Moriya interaction or from strain. Although the spin arrangement of these materials makes them highly sensitive to strain, there is little understanding about the influence of local strain fields caused by lattice defects on global properties, such as magnetization and anomalous Hall effect. This premise is investigated by examining noncollinear antiferromagnetic films that are either highly lattice mismatched or closely matched to their substrate. In either case, edge dislocation networks are generated and for the former case, these extend throughout the entire film thickness, creating large local strain fields. These strain fields allow for finite intrinsic magnetization in seemingly structurally relaxed films and influence the antiferromagnetic domain state and the intrinsic anomalous Hall effect. 
    more » « less